skip to main content


Search for: All records

Creators/Authors contains: "Giovannitti, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    The ability to control the charge density of organic mixed ionic electronic conductors (OMIECs) via reactions with redox-active analytes has enabled applications as electrochemical redox sensors. Their charge density-dependent conductivity can additionally be tuned via charge injection from electrodes, for instance in organic electrochemical transistors (OECTs), where volumetric charging of the OMIEC channel enables excellent transconductance and amplification of low potentials. Recent efforts have combined the chemical detection with the transistor function of OECTs to achieve compact electrochemical sensors. However, these sensors often fall short of the expected amplification performance of OECTs. Here, we investigate the operation mechanism of various OECT architectures to deduce the design principles required to achieve reliable chemical detection and signal amplification. By utilizing a non-polarizable gate electrode and conducting the chemical reaction in a compartment separate from the OECT, the recently developed Reaction Cell OECT achieves reliable modulation of the OECT channel's charge density. This work demonstrates that systematic and rational design of OECT chemical sensors requires understanding the electrochemical processes that result in changes in the potential (charge density) of the channel, the underlying phenomenon behind amplification. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low‐powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution‐processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air‐sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low‐powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs.

     
    more » « less
  6. Abstract

    Electroactive polymer thin films undergo repeated reversible structural change during operation in electrochemical applications. While synchrotron X‐ray scattering is powerful for the characterization of stand‐alone and ex situ organic thin films, in situ/operando structural characterization has been underutilized—in large part due to complications arising from supporting electrolyte scattering. This has greatly hampered the development of application relevant structure property relationships. Therefore, a new methodology for in situ/operando X‐ray characterization that separates the incident and scattered X‐ray beam path from the electrolyte is developed. As a proof of concept, the operando structural characterization of weakly‐scattering, organic mixed conducting thin films in an aqueous electrolyte environment is demonstrated, accessing previously unexplored changes in the π‐π peak and diffuse scatter, while capturing the solvent swollen thin film structure which is inaccessible in previous ex situ studies. These in situ/operando measurements improve the sensitivity to structural changes, capturing minute changes not possible ex situ, and have multimodal potential such as combined Raman measurements that also serve to validate the true in situ/operando conditions of the cell. Finally, new directions enabled by this in situ/operando cell design are examined and state of the art measurements are compared.

     
    more » « less